Respuesta :

Explanation:

The arithmetic series is given below as

[tex]\sum_{k\mathop{=}0}^{18}2k+7[/tex]

Step 1:

Figure out the first term and the second term

[tex]\begin{gathered} k=1 \\ 2k+7=2(1)+7=9 \\ k=2 \\ 2k+7=2(2)+7=11 \end{gathered}[/tex]

Step 2:

Calculate the common difference

[tex]\begin{gathered} d=t_2-t_1 \\ d=11-9 \\ d=2 \end{gathered}[/tex]

Step 3:

Calculate the sum of the arithmetic series using the formula below

[tex]\begin{gathered} S_n=\frac{n}{2}(2a+(n-1)d) \\ where, \\ n=18 \\ a=9 \\ d=2 \end{gathered}[/tex]

By substituting the values, we will have

[tex][/tex]