Respuesta :

Substitute n = 2 1/4 to each of the expression to determine if they are true.

[tex]\begin{gathered} 2n+3=7\frac{1}{2} \\ 2(2\frac{1}{4})+3=7\frac{1}{2} \\ 4\frac{1}{2}+3=7\frac{1}{2} \\ 7\frac{1}{2}=7\frac{1}{2}\text{ \lparen true\rparen} \end{gathered}[/tex][tex]\begin{gathered} 4n=9 \\ 4(2\frac{1}{4})=9 \\ 9=9\text{ \lparen true\rparen} \end{gathered}[/tex][tex]\begin{gathered} n-2\frac{1}{4}=0 \\ 2\frac{1}{4}-2\frac{1}{4}=0 \\ 0=0\text{ \lparen true\rparen} \end{gathered}[/tex][tex]\begin{gathered} 2\frac{1}{4}n=0 \\ 2\frac{1}{4}(2\frac{1}{4})=0 \\ \frac{81}{16}0\text{ \lparen false\rparen} \end{gathered}[/tex][tex]\begin{gathered} n\div\frac{1}{2}=\frac{1}{8} \\ 2\frac{1}{4}\div\frac{1}{2}=\frac{1}{8} \\ 1\frac{1}{8}\frac{1}{8}\text{ \lparen false\rparen} \end{gathered}[/tex]

Therefore, the equations that satisfy the solution are

[tex]\begin{gathered} 2n+3=7\frac{1}{2} \\ 4n=9 \\ n-2\frac{1}{4}=0 \end{gathered}[/tex]