A translation maps ABC onto A'B'C'. Use the coordinates A(-3, 0), B(4, 2), B'(0, 0), and C'(6, 3) to determine the translation vector and thecoordinates of C.

Given that a translation maps triangle ABC onto A'B'C'.
with coordinates;
[tex]\begin{gathered} A(-3,0) \\ B(4,2) \\ B^{\prime}(0,0) \\ C^{\prime}(6,3) \end{gathered}[/tex]Let us find the translation vector;
[tex]\begin{gathered} B(4,2)\rightarrow B^{\prime}(0,0) \\ \\ <0-4,0-2> \\ <-4,-2> \end{gathered}[/tex]Therefore, the translation vector is;
[tex]<-4,-2>[/tex]Solving for point C;
[tex]\begin{gathered} C(x,y)\rightarrow C^{\prime}(x-4,y-2)=C^{\prime}(6,3) \\ \\ x-4=6 \\ x=6+4 \\ x=10 \\ y-2=3 \\ y=3+2 \\ y=5 \\ C(10,5) \end{gathered}[/tex]Therefore, the coordinate of C is;
[tex]undefined[/tex]