Iron-59 has a half-life of 44.5 days. How much of a 3.00 mg sample will be left after 222.5 days?

Using exponential decay formula:
[tex]N=N_o(\frac{1}{2})^{\frac{t}{\tau}}[/tex]Where:
[tex]\begin{gathered} N_o=3mg \\ t=222.5_{\text{ }}days \\ \tau=44.5_{\text{ }}days \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} N=3(\frac{1}{2})^{\frac{222.5}{44.5}} \\ N\approx0.09mg \end{gathered}[/tex]Answer:
About 0.09 miligrams