Respuesta :

We are given the following 2x2 matrix

[tex]A=\begin{bmatrix}{-3} & {-2} \\ {4} & {8}\end{bmatrix}[/tex]

We are asked to find the inverse of matrix A.

Recall that the inverse of a 2x2 matrix is given by

[tex]A^{-1}=\frac{1}{ad-bc}\times\begin{bmatrix}{d} & {-b} \\ {-c} & {a}\end{bmatrix}[/tex]

Where

a = -3

b = -2

c = 4

d = 8

Let us substitute these values into the above equation

[tex]A^{-1}=\frac{1}{(-3)(8)-(-2)(4)}\times\begin{bmatrix}{8} & {-(-2)} \\ {-(4)} & {-3}\end{bmatrix}[/tex]

Now simplify

[tex]\begin{gathered} A^{-1}=\frac{1}{-24+8}\times\begin{bmatrix}{8} & {2} \\ {-4} & {-3}\end{bmatrix} \\ A^{-1}=\frac{1}{-16}\times\begin{bmatrix}{8} & {2} \\ {-4} & {-3}\end{bmatrix} \\ A^{-1}=\begin{bmatrix}{\frac{8}{-16}} & {\frac{2}{-16}} \\ {\frac{-4}{-16}} & {\frac{-3}{-16}}\end{bmatrix} \\ A^{-1}=\begin{bmatrix}{-\frac{1}{2}} & {-\frac{1}{8}} \\ {\frac{1}{4}} & {\frac{3}{16}}\end{bmatrix} \end{gathered}[/tex]

Therefore, the inverse of the matrix A is

[tex]A^{-1}=\begin{bmatrix}{-\frac{1}{2}} & {-\frac{1}{8}} \\ {\frac{1}{4}} & {\frac{3}{16}}\end{bmatrix}[/tex]