Find the focus and directrix of the parabola y = 1∕2(x +1)^2 + 4.Question 2 options:A) Focus: (–1,41∕2); Directrix: y = 31∕2B) Focus: (1,31∕2); Directrix: y = 41∕2C) Focus: (1,41∕2); Directrix: y = 31∕2D) Focus: (–1,31∕2); Directrix: y = 41∕2

Find the focus and directrix of the parabola y 12x 12 4Question 2 optionsA Focus 1412 Directrix y 312B Focus 1312 Directrix y 412C Focus 1412 Directrix y 312D F class=

Respuesta :

Given the equation:

[tex]y=\frac{1}{2}\mleft(x+1\mright)^2+4[/tex]

• You can identify that it has this form:

[tex]y=a\mleft(x-h\mright)^2+k[/tex]

Where its Vertex is:

[tex](h,k)[/tex]

And the Focus is:

[tex](h,k+\frac{1}{4a})[/tex]

In this case, you can identify that:

[tex]\begin{gathered} h=-1 \\ k=4 \\ \\ a=\frac{1}{2} \end{gathered}[/tex]

Therefore, you can determine that the Focus is:

[tex](-1,4+\frac{1}{4\cdot\frac{1}{2}})=(-1,\frac{9}{2})[/tex]

In order to write the y-coordinate of the Focus as a Mixed Numbers, you need to:

- Divide the numerator by the denominator.

- The Quotient will be the whole number part:

[tex]4[/tex]

- The new numerator will be the Remainder:

[tex]1[/tex]

- The denominator does not change.

Then:

[tex]\frac{9}{2}=4\frac{1}{2}[/tex]

• In order to find the Directrix, you need to remember that, by definition, the Directrix has the same distance from the vertex that the Focus of the parabola is. Therefore:

[tex]y=k-a[/tex][tex]y=4-\frac{1}{2}[/tex][tex]y=\frac{7}{2}[/tex]

Apply the same procedure shown before, in order to convert the Improper Fraction to a Mixed Number. Hence, you get:

[tex]y=3\frac{1}{2}[/tex]

Therefore, the answer is: Option A.