Respuesta :

Solution

How do you get the volume of a rectangular prism?

To find the volume of a rectangular prism, multiply its 3 dimensions: length x width x height. The volume is expressed in cubic units.

[tex]V=12x^5-27x^3[/tex][tex]\begin{gathered} V=\text{lwh} \\ \text{where} \\ l=\text{length}\mathrm{}w=\text{width,h}=\text{height} \\ Volume=12x^5-27x^3 \end{gathered}[/tex][tex]\begin{gathered} v=12x^5-27x^3 \\ =3x^3(4x^2-9) \\ =3x^3((2x)^2-3^2) \end{gathered}[/tex]

Assume the length is the

[tex]\begin{gathered} length=3x^3 \\ (2x)^2-3^2 \\ \text{difference of two square} \\ (2x-3)(2x+3) \\ \text{width}=2x-3 \\ \text{height = 2x+3} \end{gathered}[/tex]

Therefore the dimension of the prism are

[tex]\begin{gathered} l=3x^3 \\ w=2x-3 \\ h=2x+3 \end{gathered}[/tex]