Respuesta :
Given that the acceleration of the object is
[tex]a=4.35m/s^2[/tex]The final velocity is
[tex]v_f=13.8\text{ m/s}[/tex]The initial velocity is
[tex]v_o=6.9\text{ m/s}[/tex]We have to find displacement and distance.
Let the displacement be denoted by S and the distance by d.
First, we need to calculate time in order to find distance and displacement.
The time taken will be
[tex]\begin{gathered} t=\frac{(v_f-v_o)}{a} \\ =\frac{13.8-6.9}{4.35} \\ =1.59\text{ s} \end{gathered}[/tex](a) The displacement will be
[tex]\begin{gathered} S=v_ot+\frac{1}{2}at^2 \\ =6.9\times1.59+\frac{1}{2}\times4.35\times(1.59)^2 \\ =10.971+5.498 \\ =16.469\text{ m} \end{gathered}[/tex](b) The initial speed will be equal to the initial velocity.
Thus, the distance will be 16.469 m.
(c) The initial velocity of the second object is
[tex]v^{\prime}_o=\text{ -6.9 m/s}[/tex]The final velocity of the second object is
[tex]v^{\prime}_f=13.8\text{ m/s}[/tex]The acceleration of the second object is
[tex]a^{\prime}=\text{ 4.35 m/s}[/tex]The time taken will be
[tex]\begin{gathered} t^{\prime}=\frac{(v_f-v_o)}{a} \\ =\frac{13.8-(-6.9)_{}}{4.35} \\ =4.75\text{ s} \end{gathered}[/tex]We have to find the displacement of the second object.
Let the displacement of the second object be denoted by S'.
The displacement of the second object will be
[tex]\begin{gathered} S^{\prime}=v^{\prime}_ot^{\prime}+\frac{1}{2}a^{\prime}(t^{\prime})^2 \\ =-6.9\times4.75+\frac{1}{2}\times4.35\times(4.75)^2 \\ =-32.775+49.073 \\ =16.298\text{ m} \end{gathered}[/tex](d) The initial speed of the object will be
[tex]v^{\doubleprime}_o=6.9\text{ m/s}[/tex]We have to find the distance.
Let the distance be denoted by d'.
The distance of the second object will be
[tex]\begin{gathered} d^{\prime}=v^{\doubleprime}_ot^{\prime}+\frac{1}{2}a^{\prime}(t^{\prime})^2 \\ =6.9\times4.75+\frac{1}{2}\times4.35\times(4.75)^2_{} \\ =32.775+49.073 \\ =81.848\text{ m} \end{gathered}[/tex]