Which number line best represents the solution to the inequality -18x+3<48

SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given inequality
[tex]-18x+3<48[/tex]STEP 2: Solve for x
[tex]\begin{gathered} -18x+3<48 \\ \text{Subtract 3 from both sides} \\ -18x+3-3<48-3 \\ -18x<45 \\ \mathrm{Multiply\: both\: sides\: by\: -1\: }\mleft(\mathrm{reverse\: the\: inequality}\mright) \\ \mleft(-18x\mright)\mleft(-1\mright)>45\mleft(-1\mright) \\ \mathrm{Simplify} \\ 18x>-45 \\ \mathrm{Divide\: both\: sides\: by\: }18 \\ \frac{18x}{18}>\frac{-45}{18} \\ x>-\frac{5}{2} \\ x>-2.5 \end{gathered}[/tex]STEP 3: Plot the number line for that represents the final solution
Hence, the number line that best represents the final solution can be seen in the number line below:
OPTION A