Respuesta :

Solution:

Given the function

[tex]f(t)=220(3^{\frac{t}{10}})_{}[/tex][tex]\begin{gathered} Recall\text{ fro}mmthe\text{ law of indices that} \\ x^{\frac{a}{b}}=(x^{\frac{1}{b}})^a \end{gathered}[/tex]

Applying the law above, we can re-write f(t) as

[tex]\begin{gathered} f(t)=220(3^{\frac{1}{10}})^t \\ f(t)=220(1.116123)^t \\ \\ \text{Looking at the options given, only }f(t)=220(1.116)^t\text{ is the }only\text{ } \\ \text{option that is approx imately eqivalent to f(t)} \end{gathered}[/tex]

Hence, the correct option is D