Assuming the equation is written in the form
[tex]27=\frac{1245+15x}{43+x}[/tex]We will follow the steps below:
Step 1: cross multiply the expression
[tex]27(43+x)=1245+15x[/tex]Simplifying further
Applying PEMDAS
where P = parenthesis
E=exponents
M=multiplication
D=division
A=addition
S=subtraction
Step 2: Apply the order of operations (PEMDAS)
We will expand parenthesis, Multiply, Add and Subtract
[tex]\begin{gathered} 27\times43+27\times x=1245+15x \\ 1161+27x=1245+15x \\ 1245-1161=27x-15x \\ 84=12x \end{gathered}[/tex]Divide both sides by 12
[tex]\begin{gathered} \frac{84}{12}=\frac{12x}{12} \\ 7=x \end{gathered}[/tex]Therefore the value of x = 7