Respuesta :

Assuming the equation is written in the form

[tex]27=\frac{1245+15x}{43+x}[/tex]

We will follow the steps below:

Step 1: cross multiply the expression

[tex]27(43+x)=1245+15x[/tex]

Simplifying further

Applying PEMDAS

where P = parenthesis

E=exponents

M=multiplication

D=division

A=addition

S=subtraction

Step 2: Apply the order of operations (PEMDAS)

We will expand parenthesis, Multiply, Add and Subtract

[tex]\begin{gathered} 27\times43+27\times x=1245+15x \\ 1161+27x=1245+15x \\ 1245-1161=27x-15x \\ 84=12x \end{gathered}[/tex]

Divide both sides by 12

[tex]\begin{gathered} \frac{84}{12}=\frac{12x}{12} \\ 7=x \end{gathered}[/tex]

Therefore the value of x = 7