Respuesta :

Answer:

[tex]207yd^2[/tex]

Explanation:

Given that:

Side length of the base of the pyramid, b = 12 yd

Slant height, s = 11.5 yd

Height, h = 10.4 yd

Find the lateral surface area using the formula

[tex]LA=\frac{1}{2}Ps[/tex]

where P is the perimeter of the base.

First, find P.

[tex]\begin{gathered} P=12+12+12 \\ =36 \end{gathered}[/tex]

Substitute the values into the formula to find the lateral surface area.

[tex]\begin{gathered} LA=\frac{1}{2}\cdot36\cdot(11.5) \\ =207yd^2 \end{gathered}[/tex]

The lateral surface area of the equilateral triangular pyramid is 207 square yards.