Let the number of fruits in the bag be x.
Given:
[tex]\begin{gathered} \text{Mango = }\frac{2}{5}x \\ \text{Banana = }\frac{3}{5}x \end{gathered}[/tex]From the statement: 1/3 of the bananas or 12 bananas are removed. We can represent this mathematically as:
[tex]\frac{1}{3}\text{ }\times\text{ }\frac{3}{5}x\text{ = 12}[/tex]Solving for x:
[tex]\begin{gathered} \frac{1}{5}x\text{ = 12} \\ \text{Cross}-\text{Multiply} \\ x\text{ = 5 }\times\text{ 12} \\ =\text{ 60} \end{gathered}[/tex]Recall that the number of mangoes in the bag is:
[tex]=\text{ }\frac{2}{5}x[/tex]Substituting:
[tex]\begin{gathered} \text{Number of mangoes = }\frac{2}{5}\text{ }\times\text{ 60} \\ =\text{ 24} \end{gathered}[/tex]Hence, there are 24 mangoes in the bag
Answer:
24 mangoes