Solution:
In your own words, describe two binomials that, when multiplied, results in the difference of two squares.
Let the binomials be
[tex](x+a)\text{ and }(x-a)[/tex]Where the first term is x and the second term is a
Multiplying the binomials
[tex]\begin{gathered} (x+a)(x-a)=(x)^2-(a)^2=x^2-a^2 \\ (x+a)(x-a)=x^2-a^2 \end{gathered}[/tex]Hence, when multiplied, the result is the difference of two squares.
Assuming the binomials, for example are
[tex](2x+2)\text{ and }(2x-2)[/tex]Their product will give
[tex]\begin{gathered} (2x+2)(2x-2)=(2x)^2-(2)^2=4x^2-4 \\ (2x+2)(2x-2)=4x^2-4 \end{gathered}[/tex]Hence, the product is
[tex]4x^2-4[/tex]