Respuesta :

We can find the volume of a sphere with the formula:

[tex]V=\frac{4}{3}\pi r^3[/tex]

1) When the radius of the sphere is r=7 in, the volume V is:

[tex]V=\frac{4}{3}\pi(7)^3=\frac{4}{3}\pi\cdot343=\frac{1372}{3}\pi[/tex]

2) When the diameter of the sphere is d=33 in, the radius is r=33/2 and the volume V is:

[tex]V=\frac{4}{3}\pi(\frac{33}{2})^3=\frac{4}{3}\pi\cdot\frac{35937}{8}=\frac{1}{3}\cdot\frac{35937}{2}\cdot\pi=\frac{17968.5}{3}\pi[/tex]

3) The surface area of a sphere can be calculated with the formula:

[tex]A=4\pi r^2[/tex]

Then, if the sphere has a radius r = 2.8 in, the area A is:

[tex]A=4\pi(2.8)^2=4\pi\cdot7.84=31.36\pi[/tex]

4) In this case we know that the diameter is D = 24 mm, so the radius is r = 12 mm.

Then, the area is:

[tex]A=4\pi(12)^2=4\pi\cdot144=576\pi[/tex]

Answer:

1) (1372/3) π

2) (17968.5/3) π

3) 31.36π

4) 576π