Respuesta :

Solve:

[tex]9y^3-16y=0[/tex]

Factoring out y:

[tex]y(9y^2-16)=0[/tex]

The expression in parentheses can be factored by using the special product:

[tex]a^2-b^2=(a-b)(a+b)[/tex]

Therefore, the equation becomes:

[tex]y(3y-4)(3y+4)=0[/tex]

Now equate each factor to 0 and solve for y:

[tex]\begin{gathered} y=0 \\ \\ 3y-4=0\therefore y=\frac{4}{3} \\ \\ 3y+4=0\therefore y=-\frac{4}{3} \end{gathered}[/tex]

We have 3 solutions:

y = 0, y = 4/3, y = -4/3