Respuesta :

Let's determine the product of the following equation:

[tex]\text{ 9r}^3(r^2\text{ - 3r + 5)}[/tex]

We get,

[tex]\text{ 9r}^3(r^2\text{ - 3r + 5)}[/tex][tex]\text{ 9r}^3(r^2)+\text{ 9r}^3(\text{-3r) }+\text{ 9r}^3(\text{5)}[/tex][tex]\text{ 9r}^{3\text{ + 2}}+(9)(-3)r^{3\text{ + 1}}+(9)(5)r^3[/tex][tex]\text{ 9r}^5+(-27)r^4+(45)r^3[/tex][tex]\text{ 9r}^5-27r^4+45r^3[/tex]

Therefore, the answer is:

[tex]\text{ 9r}^5-27r^4+45r^3[/tex]