The two pyramids below are similar. What is the length of the altitude of thesmaller pyramid?8O A. 1O B.218O c.247O D.563

Answer:
The dimensions given in the question are
[tex]\begin{gathered} L=8 \\ l=3 \\ H=7 \\ h=x \end{gathered}[/tex]To figure out the altitude of the small pyramid, we will use the similarity ratio below
[tex]\frac{l}{L}=\frac{h}{H}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \frac{l}{L}=\frac{h}{H} \\ \frac{3}{8}=\frac{x}{7} \\ cross\text{ mulitply, we will have} \\ 8\times x=7\times3 \\ 8x=21 \\ divide\text{ both sides by 8} \\ \frac{8x}{8}=\frac{21}{8} \\ x=\frac{21}{8} \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow\frac{21}{8}[/tex]OPTION B is the right answer