Respuesta :

Step 1

The area of a hexagonal prism is given as;

[tex]\frac{1}{2}ap[/tex]

where;

[tex]\begin{gathered} a=apothem=\frac{s}{2tan(\frac{180}{n})} \\ h=3 \\ n=6\text{ sides} \end{gathered}[/tex][tex]a=\frac{50}{2tan(\frac{180}{6})}=25\sqrt{3}[/tex]

Hence, the area will be;

[tex]\begin{gathered} perimeter=50\times6=300 \\ A=\frac{1}{2}\times300\times25\sqrt{3}=3750\sqrt{3} \\ A=6495.19052\text{ unit}^2 \\ A\approx6495.19unit^2\text{ to decimal places} \end{gathered}[/tex]