Respuesta :

Answer:

x=57.74 units

Explanation:

In the right triangle:

• The side ,adjacent to, angle 30 degrees = 50

,

• The length of the ,hypotenuse, = x

From trigonometric ratios:

[tex]\cos \theta=\frac{\text{Adjacent}}{\text{Hypotenuse}}[/tex]

Therefore:

[tex]\begin{gathered} \cos 30\degree=\frac{50}{x} \\ x\cos 30\degree=50 \\ x=\frac{50}{\cos 30\degree} \\ x=57.74\text{ units} \end{gathered}[/tex]

The value of x is 57.74.

Note:

To determine the trigonometric ratio to use, first identify the given lengths as Opposite, Adjacent and Hypotenuse (with respect to the angles).

Then use the mnemonic below:

• Sin=Opposite/Hypotenuse :SOH

,

• cos=Adjacent/Hypotenuse :CAH

,

• tan=Opposite/Adjacent: TOA