A lifeguard on a beach observes that waves have a speed of 2.60 m/s and a distance of 2.50 m between wave crests. What is the period of the wave motion?

Respuesta :

Period =0.96 s

Explanation

the wave velocity is given by

[tex]\begin{gathered} v=\frac{\lambda}{T} \\ \text{where} \\ T\text{ is the period and }\lambda\text{ is }the\text{ distance betwe}en\text{ }wave\text{ crest} \end{gathered}[/tex]

hence

Step 1

Let

[tex]\begin{gathered} v=260\text{ m/s} \\ \lambda=2.50\text{ m} \end{gathered}[/tex]

now, replace

[tex]\begin{gathered} v=\frac{\lambda}{T} \\ 260(\frac{m}{s})=\frac{2.50\text{ m}}{T} \\ \text{solve for T} \\ T=\frac{2.50\text{ m}}{2.60(\frac{m}{s})}=0.96s^{} \\ T=0.96\text{ s} \end{gathered}[/tex]

so, the answer is 0.96 s

I hope this helps you