Respuesta :

114.55°

Explanation:[tex]\text{Given: }\frac{7\pi}{11}[/tex]

To get the equivalent of the angle above in degree, we need to convert from radians to degree:

[tex]1\pi\text{ rad = 180}\degree[/tex][tex]\begin{gathered} \text{let the value of }\frac{7\pi}{11}\text{ }degree\text{=}x \\ \\ 1\pi\text{ = 180}\degree \\ \frac{7\pi}{11}\text{ = }x \\ \text{cross multiply}\colon \\ x(1\pi)\text{ = 180(}\frac{7\pi}{11}) \\ \pi x\text{ = }\frac{180(7\pi)}{11} \end{gathered}[/tex][tex]\begin{gathered} \text{divide both sides by }\pi \\ \frac{\pi x}{\pi}\text{ = }\frac{180(7\pi)}{11}\div\text{ }\pi \\ x\text{ = }\frac{180(7\pi)}{11}\times\text{ }\frac{1}{\pi} \\ \pi\text{ cancels out} \\ \\ x\text{ = }\frac{180\times7}{11} \\ x\text{ = }114.55\degree\text{ (nearest hundredth)} \end{gathered}[/tex]