Respuesta :

Given

A = (3k,8)

B = (k, -3)

Gradient AB = 3

And we have that the gradient of a line joining the two points A and B is:

[tex]\text{Gradiente AB=}\frac{y2-y1}{x2-x1}[/tex]

Therefore, we substitute the given values into the gradient equation:

Gradient AB = 3

x1 = 3k

y1 = 8

x2 = k

y2 = -3

[tex]3=\frac{-3-8}{k-3k}[/tex]

Then, solve for k.

Simplify:

[tex]3=\frac{-11}{-2k}=\frac{11}{2k}[/tex]

Multiply by 2k on both sides:

[tex]\begin{gathered} 2k\cdot3=2k\cdot\frac{11}{2k} \\ 6k=11 \end{gathered}[/tex]

Divide by 6 on both sides:

[tex]\begin{gathered} \frac{6k}{6}=\frac{11}{6} \\ k=\frac{11}{6} \end{gathered}[/tex]

Answer: k = 11/6