For the function f(x) = x^ 2+ 5x - 2, find (b) f(-x)(c)-f(x)(d) f(3x) (e) f(x +h)-f(x) /h × h ≠ 0

we have
f(x)=x^2+5x-2
Part a) Find f(3)
For x=3
f(3)=3^2+5(3)-2
f(3)=22
Part b) f(-x)
f(-x)=(-x)^2+5(-x)-2
f(-x)=x^2-5x-2
Part c) -f(x)
-f(x)=-(x^2+5x-2)
so
-f(x)=-x^2-5x+2
Part d) f(3x)
f(3x)=(3x)^2+5(3x)-2
f(3x)=27x^2+15x-2
Part e) {f(x+h)-f(x)}/h
f(x+h)=(x+h)^2+5(x+h)-2
f(x+h)=x^2+2xh+h^2+5x+5h-2
f(x)=x^2+5x-2
Find the difference
{f(x+h)-f(x)}=(x^2+2xh+h^2+5x+5h-2)-x^2-5x+2
{f(x+h)-f(x)}=2xh+h^2+5h
therefore