Respuesta :

Given the function

[tex]y=\frac{1}{4}x[/tex]

the vertical line is given by the point

( x , 0 )

the area of the triangle is

[tex]At=\frac{b*h}{2}[/tex]

where

base= value of x

height=value of y

then

the expression of the area as a function of x is

[tex]At=\frac{x*\frac{1}{4}x}{2}[/tex][tex]At(x)=\frac{x^2}{8}[/tex]

Then when x=5

[tex]At(5)=\frac{5^2}{8}[/tex][tex]At(5)=\frac{25}{8}=3.125un^2[/tex]

The volume of the cone is given by

[tex]Vc=\frac{1}{3}\pi *r^2*h[/tex]

where

h= value of x

r= value of y

then the volume of the cone as a function of x is

[tex]Vc=\frac{1}{3}\pi *(\frac{1}{4}x)^2*x[/tex][tex]Vc=\frac{\pi x^3}{3*4^2}[/tex][tex]Vc(x)=\frac{\pi x^3}{48}[/tex]

The volume of the cone when x=16 is

[tex]Vc(16)=\frac{\pi(16)^3}{48}[/tex][tex]Vc(16)=\frac{256\pi}{3}[/tex][tex]Vc(16)=\frac{256\pi}{3}=268.082un^3[/tex]