Respuesta :

Neither

Explanation

[tex]f(x)=x^5+2x^4+3x-14[/tex]

Even:To do this, you take the function and plug –x in for x, and then simplify. If you end up with the exact same function that you started with (that is, if f (–x) = f (x), so all of the signs are the same), then the function is even.

Step 1

a)evaluate for -x

so

f(-x)

[tex]\begin{gathered} f(-x)=(-x)^5+2(-x)^4+3(-x)-14 \\ f(-x)=-x^5+2x^4-3x-14 \end{gathered}[/tex]

we conclude that

[tex]f(x)\ne f(-x)[/tex]

so, the function is not even

Step 2

Determine whether the function satisfies

[tex]f(x)=-f(-x)[/tex]

If it does, it is odd function

replace

[tex]\begin{gathered} x^5+2x^4+3x-14\text{ =? = -(}-x^5+2x^4-3x-14) \\ x^5+2x^4+3x-14\text{ =? = +}x^5-2x^4+3x+14 \\ x^5+2x^4+3x-14\text{ }\ne\text{ +}x^5-2x^4+3x+14 \end{gathered}[/tex]

therefore,

[tex]f(x)\ne-f(-x)[/tex]

so, this is not an odd function

so, the answer is

Neither

I hope this helps you