Evaluate. Then interpret the result in terms of the area above and/or below the x-axis. 1 2 f (x² – 3x) dx -1 1 S (33 – 3x) dx = (Type an integer or a simplified fraction.) -1

Evaluate Then interpret the result in terms of the area above andor below the xaxis 1 2 f x 3x dx 1 1 S 33 3x dx Type an integer or a simplified fraction 1 class=

Respuesta :

Calculate the value of

[tex]\int (x^3-3x)dx[/tex][tex]\int (x^3-3x)dx=\frac{x^4}{4}-\frac{3x^2}{2}[/tex]

Apply the limits implies,

[tex]\begin{gathered} \int ^{\frac{1}{2}}_{-1}(x^3-3x)dx=\lbrack\frac{x^4}{4}-\frac{3x^2}{2}\rbrack^{\frac{1}{2}}_{-1} \\ =\frac{1}{64}-\frac{3}{8}-\frac{1}{4}+\frac{3}{2} \\ =\frac{57}{64} \end{gathered}[/tex]

Therefore, the answer is 0.89.

Nearest integer is 1.