SOLUTION
The points are
[tex](-7,0)\text{ and (0,1)}[/tex]The equation is writing using the formula below
[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_{2-}x_1}_{}[/tex]where
[tex]x_2=0,x_1=-7,y_2=1,y_1=0[/tex]Then, we substitute the parameters into the formula above
[tex]\begin{gathered} \frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_{2-}x_1}_{} \\ \frac{y-1}{x-(-7)}=\frac{1-0}{0-(-7)} \end{gathered}[/tex]Simplifying further, we have
[tex]\begin{gathered} \frac{y-1}{x+7}=\frac{1}{7} \\ 7(y-1)=x+7 \\ 7y-7=x+7 \\ 7y-x-14=0 \\ 7y=x+14 \end{gathered}[/tex]Then in the slope-intercept form, we have the equation as
[tex]y=\frac{1}{7}x+2[/tex]
Therefore the equation of the line in the slope-intercept form is
y=(1/7)x +2