Respuesta :

Given the points (1, 12) and (-1, 0.75)

We will write the exponential function that includes the given points

Let the expression of the function will be as follows:

[tex]f(x)=a\cdot b^x[/tex]

When x = 1, f = 12

so,

[tex]12=a\cdot b\rightarrow(1)[/tex]

When x = -1, f = 0.75

So,

[tex]\begin{gathered} 0.75=a\cdot b^{-1} \\ 0.75=\frac{a}{b}\rightarrow(2) \end{gathered}[/tex]

Solve the equations (1) and (2) to find (a) and (b)

Multiply the equations to eliminate (b)

[tex]\begin{gathered} 12\cdot0.75=a^2 \\ a^2=9 \\ a=\sqrt[]{9}=3 \end{gathered}[/tex]

Substitute with (a) into equation (1) to find (b)

[tex]\begin{gathered} 12=3b \\ b=\frac{12}{3}=4 \end{gathered}[/tex]

So, the answer will be:

The equation of the exponential function will be as follows:

[tex]f(x)=3\cdot4^x[/tex]