Respuesta :

Given:

Major axis = 10

Foci at (-1,0) and (-7,0)

Find-: Equation of ellipse.

Sol:

The major axis length is 10.

That mean:

[tex]\begin{gathered} 2a=10 \\ \\ a=\frac{10}{2} \\ \\ a=5 \end{gathered}[/tex]

Distance between two foci is:

[tex]\begin{gathered} D=|-7-(-1)| \\ \\ D=|-7+1| \\ \\ D=6 \end{gathered}[/tex]

So,

[tex]\begin{gathered} 2ae=6 \\ \\ ae=\frac{6}{2} \\ \\ ae=3 \\ \\ e=\frac{3}{5} \end{gathered}[/tex]

The value of "b" is:

[tex]\begin{gathered} b^2=a^2(1-e^2) \\ \\ b^2=25(1-\frac{9}{25}) \\ \\ b^2=25-9 \\ \\ b^2=16 \end{gathered}[/tex]

Center of ellipse = Midpoint of foci

[tex]\begin{gathered} =(\frac{-1+(-7)}{2},\frac{0+0}{2}) \\ \\ =(-4,0) \end{gathered}[/tex]

Hence, the equation of the ellipse is:

[tex]\frac{(x+4)^2}{25}+\frac{y^2}{16}=1[/tex]