Respuesta :

According to the given problem,

[tex]\begin{gathered} P(A\cap B)=0.29 \\ P(\frac{A}{B})=0.67 \end{gathered}[/tex]

Consider the formula for conditional probability,

[tex]P(\frac{A}{B})=\frac{P(A\cap B)}{P(B)}[/tex]

Transposing the terms,

[tex]P(B)=\frac{P(A\cap B)}{P(\frac{A}{B})}[/tex]

Substitute the values,

[tex]\begin{gathered} P(B)=\frac{0.29}{0.67} \\ P(B)=\frac{29}{67} \\ P(B)\approx0.4328 \\ P(B)\approx43.28\text{ percent} \end{gathered}[/tex]

Thus, the required probability is 43.28% approximately.