The given polynomial:
[tex]f(x)=4x^5-48x^4_{}+169x^3-157x^2-309x-91[/tex]Use the rational root theorem:
Leading coefficient = 4
The dividers of 4 are : 1,2,4
Last term = 91
The dividers of 91 are: 1,7,13,91
[tex]\text{Root =}\frac{Dividers\text{ of coefficient of }last\text{ term}}{Dividers\text{ of coefficient of leading term}}[/tex][tex]\text{Root}=\frac{1,7,13,91}{1,2,4}[/tex]First root is 7
x = 7 is the zero of the given polnomial
Divide f(x) by (x - 7) by long division method
[tex]\begin{gathered} \frac{f(x)}{x-7}=\frac{4x^5-48x^4_{}+169x^3-157x^2-309x-91}{x-7} \\ \frac{f(x)}{x-7}=4x^4-20x^3+29x^2+46x+13 \end{gathered}[/tex]Now, factorize the resulting quotient:
[tex]4x^4-20x^3+29x^2+46x+13[/tex]Again use rational root theorem
fisrt term 4
Factors of 4: 1,2,4
Last term 13
Factors of 13: 1,13
[tex]\text{Root}=\pm\frac{1,13}{1,2,4}[/tex]root of the function is -1/2
x = -1/2
2x+1 = 0
Divide the polynomial by 2x+1
[tex]\frac{4x^4-20x^3+29x^2+46x+13}{2x+1}=2x^3-11x^2+20x+13[/tex]Now, factorize the polynomial
[tex]2x^3-11x^2+20x+13[/tex]Leading term coefficient = 2
Factor of 2: 1,2'
Last term coefficient = 13
Factor of 13 = 1,13
Root = -1/2
x = -1/2
2x+1
Divide the polynomial by 2x+1
[tex]\frac{2x^3-11x^2+20x+13}{2x+1}=x^2-6x+13[/tex]Factorize:
[tex]x^2-6x_{}+13[/tex]Appy discriminant rule
[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ x=\frac{6\pm\sqrt{36-4(1)(13}_{}}{2(1)} \\ x=3+2i,3-2i \end{gathered}[/tex]So, the zeros are
[tex]x=7,-\frac{1}{2},\frac{-1}{2},3+2i,3-2i[/tex]Answer:
[tex]x=7,-\frac{1}{2},\frac{-1}{2},3+2i,3-2i[/tex]