Mr. Haley is leaning a ladder against the side of his house to repair the roof.
The top of the ladder reaches the roof, which is 12 feet high.
The base of the ladder is 9 feet away from the house, where Mr. Haley's son is holding it steady,
What is the length of the ladder?

Respuesta :

Answer:

15 ft

Explanation:

We can represent the situation with the following figure

Therefore, the length of the ladder is the hypotenuse of the right triangle formed, where the legs are 12 ft and 9 ft. Using the Pythagorean theorem, we can calculate the length of the ladder as

[tex]\begin{gathered} Ladder=\sqrt{12^2+9^2} \\ Ladder=\sqrt{144+81} \\ Ladder=\sqrt{225} \\ Ladder=15 \end{gathered}[/tex]

Therefore, the length of the ladder is 15 ft

Ver imagen YochananL673931