Respuesta :

The Solution:

The correct answer is:

[tex]\frac{y^{\frac{8}{3}}}{x^{\frac{1}{2}}}[/tex]

Explanation:

Given the expression below:

[tex]\frac{y^{\frac{4}{3}}x^{\frac{1}{2}}}{y^{}^{-\frac{4}{3}}x}[/tex]

We are required to simplify the above expression using the same notation.

[tex]\frac{y^{\frac{4}{3}}\times x^{\frac{1}{2}}}{y^{-\frac{4}{3}}\times x}=\frac{y^{\frac{4}{3}}}{y^{-\frac{4}{3}}}\times\frac{x^{\frac{1}{2}}}{x^1}[/tex]

This becomes

[tex]y^{\frac{4}{3}--\frac{4}{3}}\times x^{\frac{1}{2}-1}=y^{\frac{8}{3}}\times x^{-\frac{1}{2}}[/tex]

So we have,

[tex]\frac{y^{\frac{8}{3}}}{x^{\frac{1}{2}}}[/tex]

Therefore, the correct answer is

[tex]\frac{y^{\frac{8}{3}}}{x^{\frac{1}{2}}}[/tex]