Hi, can you help me to rewrite the six trigonometric functions of theta in terms of sine and/or cosine of the reference angle Sketch both the given angle and reference angle on the circle.

We want to find the six trig functions of the angle given in terms of that of its reference angle.
[tex]\theta=\frac{7\pi}{9}[/tex]This is a sketch of the angle;
This is smaller that 360, so it cant be reduced further, It is the reference angle.
So;
[tex]\begin{gathered} \sin \theta=\sin \frac{7\pi}{9} \\ \cos \theta=\cos \frac{7\pi}{9} \\ \tan \theta=\frac{\sin \frac{7\pi}{9}}{\cos \frac{7\pi}{9}} \\ \csc \theta=\frac{1}{\sin \frac{7\pi}{9}} \\ \sec \theta=\frac{1}{\cos \frac{7\pi}{9}} \\ \cot \theta=\frac{1}{\tan\theta}=\frac{\cos \frac{7\pi}{9}}{\sin \frac{7\pi}{9}} \end{gathered}[/tex]These are our trigonometric ratios.