1) We can tackle this question by inserting the data into the formula below, for interest compounded quarterly.
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]2) So we can do this:
[tex]\begin{gathered} 10000=P(1+\frac{0.07}{4})^{4\cdot3} \\ 10000=P(1.0175)^{12} \\ P\left(1.0175\right)^{12}=10000 \\ \frac{P\cdot\:1.0175^{12}}{1.23143}=\frac{10000}{1.23143} \\ P=8120.58 \\ \end{gathered}[/tex]Thus, $8,120.58 should be invested.