Respuesta :

Given:

TW=120

TV=3x+1

UV=x-6

UW=8x-4

The objective is to find the length of UV,

The length of UV can be calculated as,

[tex]\begin{gathered} TW=TV+UW-UV \\ 120=3x+1+8x-4-(x-6) \\ 120=3x+1+8x-4-x+6 \\ 120=10x+3 \\ 10x=120-3 \\ x=\frac{117}{10} \\ x=11.7 \end{gathered}[/tex]

Now, substitute the value of x in UV.

[tex]\begin{gathered} UV=x-6 \\ UV=11.7-6 \\ UV=5.7 \end{gathered}[/tex]

Hence, the length of UV is 5.7.