Respuesta :

The form of the linear equation is

[tex]y=mx+b[/tex]

m is the slope of rule

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

b is the y-intercept

Since the line passes through points (1, 2), (-2, 1), then

[tex]\begin{gathered} x_1=-2,y_1=1 \\ x_2=1,y_2=2 \end{gathered}[/tex]

Substitute them in the rule of m to find it

[tex]\begin{gathered} m=\frac{2-1}{1-(-2)} \\ m=\frac{1}{1+2} \\ m=\frac{1}{3} \end{gathered}[/tex]

Substitute it in the form of the equation

[tex]y=\frac{1}{3}x+b[/tex]

To find b substitute x by 1 and y by 2 in the equation

[tex]\begin{gathered} 2=\frac{1}{3}(1)+b \\ 2=\frac{1}{3}+b \end{gathered}[/tex]

Subtract 1/3 from both sides to find b

[tex]\begin{gathered} 2-\frac{1}{3}=\frac{1}{3}-\frac{1}{3}+b \\ \frac{6}{3}-\frac{1}{3}=b \\ \frac{5}{3}=b \end{gathered}[/tex]

The equation of the line is

[tex]y=\frac{1}{3}x+\frac{5}{3}[/tex]