Respuesta :

In this case, we'll have to carry out several steps to find the solution.

Step 01:

data:

point 01 (-3 , 4)

point 02 (5 , 2)

Step 02:

equation of the line:

slope:

[tex]m\text{ =}\frac{y2-y1}{x2-x1}=\frac{2-4}{5-(-3)}=\frac{-2}{5+3}=\frac{-2}{8}=\frac{-1}{4}[/tex]

Point-slope form of the line:

(y - y1) = m (x - x1)

(y - 4) = -1 / 4 (x - (-3))

(y - 4) = -1 /4 (x + 3)

[tex]\begin{gathered} y\text{ - 4 =}\frac{-1}{4}x-\frac{3}{4} \\ \\ y\text{ = }\frac{-1}{4}x\text{ -}\frac{3}{4}+4 \\ \\ y\text{ = }\frac{-1}{4}x+\frac{13}{4} \end{gathered}[/tex]

The answer is:

[tex]y=\frac{-1}{4}x+\frac{13}{4}[/tex]