An equation is shown below:6(2x − 11) + 15 = 3x + 12Part A: Write the steps you will use to solve the equation, and explain each step. (6 points)Part B: What value of x makes the equation true? (4 points)Can you answer part a and part b in written form please?

Respuesta :

Given:

[tex]6(2x-11)+15=3x+12[/tex]

Required:

To write the steps to solve the given equation and to find the value of x.

Explanation:

(A)

Consider

[tex]6(2x-11)+15=3x+12[/tex]

First multiply 6,

[tex]12x-66+15=3x+12[/tex]

Next subtract 15 from 61, we get

[tex]12x-51=3x+12[/tex]

Add 51 to the above equation

[tex]\begin{gathered} 12x-51+51=3x+12+51 \\ 12x=3x+63 \end{gathered}[/tex]

Subtract 3x we get

[tex]\begin{gathered} 12x-3x=3x-3x+63 \\ 9x=63 \end{gathered}[/tex]

Divide 9 on both side, we get

[tex]\begin{gathered} \frac{9x}{9}=\frac{63}{9} \\ \\ x=7 \end{gathered}[/tex]

(B)

[tex]\begin{gathered} 6(2x-11)+15=3x+12 \\ 12x-66+15=3x+12 \\ 12x-3x=12-15+66 \\ 9x=63 \\ x=\frac{63}{9} \\ x=7 \end{gathered}[/tex]

x = 7 makes the equation true.

Final Answer:

The value of x = 7 makes the equation true.