Given:
[tex]6(2x-11)+15=3x+12[/tex]Required:
To write the steps to solve the given equation and to find the value of x.
Explanation:
(A)
Consider
[tex]6(2x-11)+15=3x+12[/tex]First multiply 6,
[tex]12x-66+15=3x+12[/tex]Next subtract 15 from 61, we get
[tex]12x-51=3x+12[/tex]Add 51 to the above equation
[tex]\begin{gathered} 12x-51+51=3x+12+51 \\ 12x=3x+63 \end{gathered}[/tex]Subtract 3x we get
[tex]\begin{gathered} 12x-3x=3x-3x+63 \\ 9x=63 \end{gathered}[/tex]Divide 9 on both side, we get
[tex]\begin{gathered} \frac{9x}{9}=\frac{63}{9} \\ \\ x=7 \end{gathered}[/tex](B)
[tex]\begin{gathered} 6(2x-11)+15=3x+12 \\ 12x-66+15=3x+12 \\ 12x-3x=12-15+66 \\ 9x=63 \\ x=\frac{63}{9} \\ x=7 \end{gathered}[/tex]x = 7 makes the equation true.
Final Answer:
The value of x = 7 makes the equation true.