Respuesta :

Given:

[tex]1+8+27+64+125+.....[/tex]

To find:

The sum of the first 9 terms

Explanation:

The series is of the form,

[tex]1^3+2^3+3^3+4^3+5^3+......[/tex]

Using the formula,

[tex]1^3+2^3+.....+n^3=(\frac{n(n+1)}{2})^2[/tex]

Here, n = 9.

On substitution we get,

[tex]\begin{gathered} 1^3+2^3+......+^3=(\frac{9(9+1)}{2})^2 \\ =(\frac{9(10)}{2})^2 \\ =(\frac{90}{2})^2 \\ =45^2 \\ =2025 \end{gathered}[/tex]

Final answer:

The sum of the first 9 terms is 2025.