the terminal ray of ∠A passes through the point (10,−4).∠A is drawn in standard position.What is the value of secA?Enter your answer as an exact answer, in simplified form, in the box.

Respuesta :

Answer:

√29/5

Explanation:

The terminal ray of ∠A passes through the point (10,−4).

From the diagram above, angle A is in quadrant IV.

First, find the value of r using the Pythagoras theorem:

[tex]\begin{gathered} r^2=10^2+(-4)^2 \\ r^2=100+16 \\ r^2=116 \\ r=\sqrt{116} \\ r=2\sqrt{29} \end{gathered}[/tex]

Secant is the inverse of cosine.

Therefore:

[tex]\begin{gathered} \sec A=\frac{Hypotenuse}{Adjacent} \\ =\frac{r}{x} \\ =\frac{2\sqrt{29}}{10} \\ \sec A=\frac{\sqrt{29}}{5} \end{gathered}[/tex]

The value of sec A is √29/5.

Method 2

The terminal ray of ∠A passes through the point (10,−4).

[tex]\begin{gathered} (x,y)=(10,-4) \\ \text{ Opposite Side, }y=-4 \\ \text{ Adjacent Side, }x=10 \end{gathered}[/tex]

Find the value of the hypotenuse, r using the Pythagoras theorem:

[tex]\begin{gathered} r^2=10^2+(-4)^2 \\ r^2=100+16 \\ r^2=116 \\ r=\sqrt{116} \\ r=2\sqrt{29} \end{gathered}[/tex]

Secant is the inverse of cosine.

Therefore:

[tex]\begin{gathered} \sec A=\frac{Hypotenuse}{Adjacent} \\ =\frac{r}{x} \\ =\frac{2\sqrt{29}}{10} \\ \sec A=\frac{\sqrt{29}}{5} \end{gathered}[/tex]

The value of sec A is √29/5.



Ver imagen RobertZ165897