Respuesta :

EXPLANATION

We have that the mean is μ= 55.8 and the standard deviation is σ = 7.8 inches

We can get the probability by first computing the z-score as follows:

a) For height < 37.7 inches --> x=37.7

[tex]z=\frac{x-u}{\sigma}=\frac{37.7-55.8}{7.8}=\frac{-18.1}{7.8}=-2.32[/tex]

Applying the z-score table:

[tex]P(x<37.7)=0.0102[/tex]

b) For height more than 58.3 inches x>58.3 ---> P(x>58.3) = 1- P(x<58.3)

Computing P(x<58.3):

[tex]z=\frac{58.3-55.8}{7.8}=\frac{2.5}{7.8}=0.3205[/tex]

Applying the z-score table:

[tex]undefined[/tex]