Respuesta :

[tex]\begin{gathered} \frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}}(\frac{\sqrt{3}+\sqrt{x}}{\sqrt{3}+\sqrt{x}}) \\ \frac{\sqrt{3}\left(\sqrt{3}+\sqrt{x}\right)}{\left(\sqrt{3}-\sqrt{x}\right)\left(\sqrt{3}+\sqrt{x}\right)} \\ \end{gathered}[/tex]

in this part, multiply root of 3 by the terms of the parenthesis. This is

[tex]\frac{\sqrt[]{3}\cdot\sqrt[]{3}+\sqrt[]{3}\cdot\sqrt[]{x}}{(\sqrt[]{3})^2-(\sqrt[]{x})^2}[/tex]

then solve the numerator and denominator

[tex]\frac{3+\sqrt[]{3x}}{3-x}[/tex]

thats the answer simplified