Problem
[tex]\text{State the symmetry of f(x) = x}^4+2x^3\text{ - 4x}[/tex]Method
A symmetric function is a function in several variable which remain unchanged for any permutation of the variables.
f(-x) = f(x)
Final answer
[tex]\begin{gathered} f(x)=x^4+2x^3\text{ - 4x} \\ \\ f(-x)\text{ = }x^4+2(-x)^3\text{ - 4(-x)} \\ f(-x)=x^4-2x^3\text{ + 4x} \end{gathered}[/tex]from the final solution
[tex]\begin{gathered} f(x)\text{ }\ne\text{ f(-x)} \\ \text{Hence, the function is not symmetric} \end{gathered}[/tex]