use the properties of logarithms to write the following expression as a single term that doesn’t contain a logarithm.

Given
[tex]e^{8-8(\ln x)+\ln y}[/tex]Find
Express as a single term
Explanation
now,
[tex]\begin{gathered} e^{8-8(\ln x)+\ln y} \\ e^8.e^{-8\ln x}.e^{\ln y} \\ e^8.e^{\ln(x)^{-8}}.e^{\ln y}..........................................\text{\lparen}\ln x^a=a\ln x\text{\rparen} \\ e^8.^(x)^{-8}.y\text{ ..................................................\lparen e}^{\ln p}=p\text{\rparen} \\ \frac{ye^8}{x^8} \end{gathered}[/tex]Final Answer
Therefore, the single expression is
[tex]\frac{ye^8}{x^8}[/tex]