Rectangle EFGH has coordinates: E(-3, 6) F(3, 6) G(3, -6) H(-3, -6) draw the dialation of EFGH after it has been dialated by a scale factor of 1/3 on your recording sheet. A. G'(1, -3) B. G'(1, -2)C. G'(-1, 2)D. G'(-3, 6)

Respuesta :

The transformation is a dilation with a scale factor of 1/3, this means we have to multiply each coordinate with this scale factor to find G'. Let's do it.

[tex]G(3,-6)\rightarrow G^{\prime}(3\cdot\frac{1}{3},-6\cdot\frac{1}{3})\rightarrow G^{\prime}(1,-2)[/tex]

The dilation of G is G'(1,-2).

We repeat the process for each vertex.

[tex]E(-3,6)\rightarrow E^{\prime}(-3\cdot\frac{1}{3},6\cdot\frac{1}{3})\rightarrow E^{\prime}(-1,2)[/tex][tex]F(3,6)\rightarrow F^{\prime}(3\cdot\frac{1}{3},6\cdot\frac{1}{3})\rightarrow F^{\prime}(1,2)[/tex][tex]H(-3,-6)\rightarrow H^{\prime}(-3\cdot\frac{1}{3},-6\cdot\frac{1}{3})\rightarrow H^{\prime}(-1,-2)[/tex]

Therefore, the new rectangle has the following vertices: E'(-1,2), F'(1,2), G'(1,-2), and H'(-1,-2).