4x2 + 4x - 1, evaluate and fully simplify each of the - For the function f(0) following f(s + h) f(x + h) - f(5) h 10

Given the function f(x);
[tex]f(x)=-4x^2+4x-1[/tex]Evaluating the function f(x+h);
[tex]\begin{gathered} f(x+h)=-4(x+h)^2+4(x+h)-1 \\ f(x+h)=-4(x^2+2xh+h^2)^{}+4(x+h)-1 \\ f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1 \end{gathered}[/tex]So;
[tex]f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1[/tex]Evaluating the second function;
[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1-(-4x^2+4x-1)}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1+4x^2-4x+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2+4x^2-4h^2-8xh^{}+4x-4x+4h-1+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h} \end{gathered}[/tex]simplifying further;
[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h}=-4h-8x+4 \\ \frac{f(x+h)-f(x)}{h}=-4h-8x+4 \end{gathered}[/tex]Therefore, we have;
[tex]undefined[/tex]