Respuesta :

Given the function f(x);

[tex]f(x)=-4x^2+4x-1[/tex]

Evaluating the function f(x+h);

[tex]\begin{gathered} f(x+h)=-4(x+h)^2+4(x+h)-1 \\ f(x+h)=-4(x^2+2xh+h^2)^{}+4(x+h)-1 \\ f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1 \end{gathered}[/tex]

So;

[tex]f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1[/tex]

Evaluating the second function;

[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1-(-4x^2+4x-1)}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1+4x^2-4x+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2+4x^2-4h^2-8xh^{}+4x-4x+4h-1+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h} \end{gathered}[/tex]

simplifying further;

[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h}=-4h-8x+4 \\ \frac{f(x+h)-f(x)}{h}=-4h-8x+4 \end{gathered}[/tex]

Therefore, we have;

[tex]undefined[/tex]