Respuesta :

The area of a circle is given by:

[tex]A_C=\frac{1}{4}\cdot\pi\cdot d^2.[/tex]

Where π ≅ 3.14 and d is the diameter of the circle.

Now, a semi-circle is a half of a circle, so its area is half of the area of the complete circle:

[tex]A_{SC}=\frac{1}{2}\cdot A_C=\frac{1}{2}\cdot(\frac{1}{4}\cdot\pi\cdot d^2)=\frac{1}{8}\cdot\pi\cdot d^2\text{.}[/tex]

Replacing the value d = 14 in the last formula, we get:

[tex]A_{SC}=\frac{1}{8}\cdot\pi\cdot(14units)^2=24.5\cdot\pi\cdot units^2\cong76.97units^2.[/tex]

Answer

The area of a semicircle with a diameter d =14 is approximately 76.97 units square.