Question 3 (1 point) Solve the system of equation using the elimination method. Your answer has to be an ordered pair (x, y) x - 2y = 11 2x + y = 19 Blank 1:

Respuesta :

Given:

x - 2y = 11

2x + y = 19

To solve using elimination method, we have:

• Step 1:

Multiply equation 1 by 2, then multiply equation 2 by 1.

x - 2y = 11 ....................x2

2x + y = 19...................x1

2x - 4y = 22

2x + y = 19

• Step 2:

Now, subtract both equations:

[tex]\begin{gathered} 2x-4y=22 \\ -2x\text{ +y = 19} \\ _{----------} \\ \text{ -5y = }3 \end{gathered}[/tex]

• Divide both sides by -5:

Replace y with -3/5 in any of the equations to find x.

Let's take equation 2:

[tex]\begin{gathered} 2x\text{ -}\frac{3}{5}=19 \\ \end{gathered}[/tex]

Multiply through by 5 to eliminate the fraction:

[tex]\begin{gathered} 2x(5)-\frac{3}{5}\ast5=19(5) \\ \\ 10x-3=95 \end{gathered}[/tex]

Add 3 to both sides:

[tex]\begin{gathered} 10x-3+3=95+3 \\ \\ 10x\text{ = 98} \end{gathered}[/tex]

Divide both sides by 10:

[tex]\begin{gathered} \frac{10x}{10}=\frac{98}{10} \\ \\ x\text{ =}\frac{49}{5} \end{gathered}[/tex][tex]x\text{ = }\frac{49}{5},\text{ and y=-}\frac{3}{5}[/tex]

ANSWER:

[tex]\text{(}\frac{49}{5},\text{ -}\frac{3}{5})[/tex]